Class Heap<E, R>

  1. Complete Binary Tree: Heaps are typically complete binary trees, meaning every level is fully filled except possibly for the last level, which has nodes as far left as possible.
  2. Heap Properties: Each node in a heap follows a specific order property, which varies depending on the type of heap: Max Heap: The value of each parent node is greater than or equal to the value of its children. Min Heap: The value of each parent node is less than or equal to the value of its children.
  3. Root Node Access: In a heap, the largest element (in a max heap) or the smallest element (in a min heap) is always at the root of the tree.
  4. Efficient Insertion and Deletion: Due to its structure, a heap allows for insertion and deletion operations in logarithmic time (O(log n)).
  5. Managing Dynamic Data Sets: Heaps effectively manage dynamic data sets, especially when frequent access to the largest or smallest elements is required.
  6. Non-linear Search: While a heap allows rapid access to its largest or smallest element, it is less efficient for other operations, such as searching for a specific element, as it is not designed for these tasks.
  7. Efficient Sorting Algorithms: For example, heap sort. Heap sort uses the properties of a heap to sort elements.
  8. Graph Algorithms: Such as Dijkstra's shortest path algorithm and Prime's minimum-spanning tree algorithm, which use heaps to improve performance.
// Use Heap to sort an array
function heapSort(arr: number[]): number[] {
const heap = new Heap<number>(arr, { comparator: (a, b) => a - b });
const sorted: number[] = [];
while (!heap.isEmpty()) {
sorted.push(heap.poll()!); // Poll minimum element
}
return sorted;
}

const array = [5, 3, 8, 4, 1, 2];
console.log(heapSort(array)); // [1, 2, 3, 4, 5, 8]
// Use Heap to solve top k problems
function topKElements(arr: number[], k: number): number[] {
const heap = new Heap<number>([], { comparator: (a, b) => b - a }); // Max heap
arr.forEach(num => {
heap.add(num);
if (heap.size > k) heap.poll(); // Keep the heap size at K
});
return heap.toArray();
}

const numbers = [10, 30, 20, 5, 15, 25];
console.log(topKElements(numbers, 3)); // [15, 10, 5]
// Use Heap to merge sorted sequences
function mergeSortedSequences(sequences: number[][]): number[] {
const heap = new Heap<{ value: number; seqIndex: number; itemIndex: number }>([], {
comparator: (a, b) => a.value - b.value // Min heap
});

// Initialize heap
sequences.forEach((seq, seqIndex) => {
if (seq.length) {
heap.add({ value: seq[0], seqIndex, itemIndex: 0 });
}
});

const merged: number[] = [];
while (!heap.isEmpty()) {
const { value, seqIndex, itemIndex } = heap.poll()!;
merged.push(value);

if (itemIndex + 1 < sequences[seqIndex].length) {
heap.add({
value: sequences[seqIndex][itemIndex + 1],
seqIndex,
itemIndex: itemIndex + 1
});
}
}

return merged;
}

const sequences = [
[1, 4, 7],
[2, 5, 8],
[3, 6, 9]
];
console.log(mergeSortedSequences(sequences)); // [1, 2, 3, 4, 5, 6, 7, 8, 9]
// Use Heap to dynamically maintain the median
class MedianFinder {
private low: MaxHeap<number>; // Max heap, stores the smaller half
private high: MinHeap<number>; // Min heap, stores the larger half

constructor() {
this.low = new MaxHeap<number>([]);
this.high = new MinHeap<number>([]);
}

addNum(num: number): void {
if (this.low.isEmpty() || num <= this.low.peek()!) this.low.add(num);
else this.high.add(num);

// Balance heaps
if (this.low.size > this.high.size + 1) this.high.add(this.low.poll()!);
else if (this.high.size > this.low.size) this.low.add(this.high.poll()!);
}

findMedian(): number {
if (this.low.size === this.high.size) return (this.low.peek()! + this.high.peek()!) / 2;
return this.low.peek()!;
}
}

const medianFinder = new MedianFinder();
medianFinder.addNum(10);
console.log(medianFinder.findMedian()); // 10
medianFinder.addNum(20);
console.log(medianFinder.findMedian()); // 15
medianFinder.addNum(30);
console.log(medianFinder.findMedian()); // 20
medianFinder.addNum(40);
console.log(medianFinder.findMedian()); // 25
medianFinder.addNum(50);
console.log(medianFinder.findMedian()); // 30
// Use Heap for load balancing
function loadBalance(requests: number[], servers: number): number[] {
const serverHeap = new Heap<{ id: number; load: number }>([], { comparator: (a, b) => a.load - b.load }); // min heap
const serverLoads = new Array(servers).fill(0);

for (let i = 0; i < servers; i++) {
serverHeap.add({ id: i, load: 0 });
}

requests.forEach(req => {
const server = serverHeap.poll()!;
serverLoads[server.id] += req;
server.load += req;
serverHeap.add(server); // The server after updating the load is re-entered into the heap
});

return serverLoads;
}

const requests = [5, 2, 8, 3, 7];
console.log(loadBalance(requests, 3)); // [12, 8, 5]
// Use Heap to schedule tasks
type Task = [string, number];

function scheduleTasks(tasks: Task[], machines: number): Map<number, Task[]> {
const machineHeap = new Heap<{ id: number; load: number }>([], { comparator: (a, b) => a.load - b.load }); // Min heap
const allocation = new Map<number, Task[]>();

// Initialize the load on each machine
for (let i = 0; i < machines; i++) {
machineHeap.add({ id: i, load: 0 });
allocation.set(i, []);
}

// Assign tasks
tasks.forEach(([task, load]) => {
const machine = machineHeap.poll()!;
allocation.get(machine.id)!.push([task, load]);
machine.load += load;
machineHeap.add(machine); // The machine after updating the load is re-entered into the heap
});

return allocation;
}

const tasks: Task[] = [
['Task1', 3],
['Task2', 1],
['Task3', 2],
['Task4', 5],
['Task5', 4]
];
const expectedMap = new Map<number, Task[]>();
expectedMap.set(0, [
['Task1', 3],
['Task4', 5]
]);
expectedMap.set(1, [
['Task2', 1],
['Task3', 2],
['Task5', 4]
]);
console.log(scheduleTasks(tasks, 2)); // expectedMap

Type Parameters

  • E = any
  • R = any

Hierarchy (view full)

Constructors

  • The constructor initializes a heap data structure with optional elements and options.

    Type Parameters

    • E = any
    • R = any

    Parameters

    • elements: Iterable<E, any, any> | Iterable<R, any, any> = []

      The elements parameter is an iterable object that contains the initial elements to be added to the heap. It is an optional parameter, and if not provided, the heap will be initialized as empty.

    • Optionaloptions: HeapOptions<E, R>

      The options parameter is an optional object that can contain additional configuration options for the heap. In this case, it is used to specify a custom comparator function for comparing elements in the heap. The comparator function is used to determine the order of elements in the heap.

    Returns Heap<E, R>

Accessors

  • get comparator(): Comparator<E>
  • The function returns the value of the _comparator property.

    Returns Comparator<E>

    The _comparator property is being returned.

  • get elements(): E[]
  • The function returns an array of elements.

    Returns E[]

    The element array is being returned.

  • get leaf(): undefined | E
  • Get the last element in the heap, which is not necessarily a leaf node.

    Returns undefined | E

    The last element or undefined if the heap is empty.

  • get size(): number
  • Get the size (number of elements) of the heap.

    Returns number

Methods

  • Time Complexity: O(log n) Space Complexity: O(1)

    Float operation to maintain heap properties after adding an element.

    Parameters

    • index: number

      The index of the newly added element.

    Returns boolean

  • The function _getIterator returns an iterable iterator for the elements in the class.

    Returns IterableIterator<E, any, any>

  • Time Complexity: O(log n) Space Complexity: O(1)

    Sinking operation to maintain heap properties after removing the top element.

    Parameters

    • index: number

      The index from which to start sinking.

    • halfLength: number

    Returns boolean

  • Time Complexity: O(n) Space Complexity: O(1)

    The function is an implementation of the Symbol.iterator method that returns an IterableIterator.

    Parameters

    • Rest...args: any[]

      The args parameter in the code snippet represents a rest parameter. It allows the function to accept any number of arguments as an array. In this case, the args parameter is used to pass any number of arguments to the _getIterator method.

    Returns IterableIterator<E, any, any>

  • Time Complexity: O(log n) Space Complexity: O(1)

    The add function pushes an element into an array and then triggers a bubble-up operation.

    Parameters

    • element: E

      The element parameter represents the element that you want to add to the data structure.

    Returns boolean

    The add method is returning a boolean value, which is the result of calling the _bubbleUp method with the index this.elements.length - 1 as an argument.

  • Time Complexity: O(k log n) Space Complexity: O(1)

    The addMany function iterates over elements and adds them to a collection, returning an array of boolean values indicating success or failure.

    Parameters

    • elements: Iterable<E, any, any> | Iterable<R, any, any>

      The elements parameter in the addMany method is an iterable containing elements of type E or R. The method iterates over each element in the iterable and adds them to the data structure. If a transformation function _toElementFn is provided, it transforms the element

    Returns boolean[]

    The addMany method returns an array of boolean values indicating whether each element in the input iterable was successfully added to the data structure.

  • Reset the elements of the heap. Make the elements empty.

    Returns void

  • Time Complexity: O(n) Space Complexity: O(n)

    Clone the heap, creating a new heap with the same elements.

    Returns Heap<E, R>

    A new Heap instance containing the same elements.

  • Time Complexity: O(n) Space Complexity: O(1)

    The delete function removes an element from an array-like data structure, maintaining the order and structure of the remaining elements.

    Parameters

    • element: E

      The element parameter represents the element that you want to delete from the array this.elements.

    Returns boolean

    The delete function is returning a boolean value. It returns true if the element was successfully deleted from the array, and false if the element was not found in the array.

  • Time Complexity: O(n) Space Complexity: O(log n)

    Depth-first search (DFS) method, different traversal orders can be selected。

    Parameters

    • order: DFSOrderPattern = 'PRE'

      Traverse order parameter: 'IN' (in-order), 'PRE' (pre-order) or 'POST' (post-order).

    Returns E[]

    An array containing elements traversed in the specified order.

  • Time Complexity: O(n) Space Complexity: O(1)

    The every function checks if every element in the array satisfies a given predicate.

    Parameters

    • predicate: ElementCallback<E, R, boolean>

      The predicate parameter is a callback function that takes three arguments: the current element being processed, its index, and the array it belongs to. It should return a boolean value indicating whether the element satisfies a certain condition or not.

    • OptionalthisArg: any

      The thisArg parameter is an optional argument that specifies the value to be used as this when executing the predicate function. If thisArg is provided, it will be passed as the this value to the predicate function. If thisArg is

    Returns boolean

    The every method is returning a boolean value. It returns true if every element in the array satisfies the provided predicate function, and false otherwise.

  • Time Complexity: O(n) Space Complexity: O(n)

    The filter function creates a new Heap object containing elements that pass a given callback function.

    Parameters

    • callback: ElementCallback<E, R, boolean>

      The callback parameter is a function that will be called for each element in the heap. It takes three arguments: the current element, the index of the current element, and the heap itself. The callback function should return a boolean value indicating whether the current element should be included in the filtered list

    • OptionalthisArg: any

      The thisArg parameter is an optional argument that specifies the value to be used as this when executing the callback function. If thisArg is provided, it will be passed as the this value to the callback function. If thisArg is

    Returns Heap<E, R>

    The filter method is returning a new Heap object that contains the elements that pass the filter condition specified by the callback function.

  • Time Complexity: O(n log n) Space Complexity: O(n)

    Fix the entire heap to maintain heap properties.

    Returns boolean[]

  • Time Complexity: O(n) Space Complexity: O(1)

    The forEach function iterates over each element in an array-like object and calls a callback function for each element.

    Parameters

    • callbackfn: ElementCallback<E, R, void>

      The callbackfn parameter is a function that will be called for each element in the array. It takes three arguments: the current element being processed, the index of the current element, and the array that forEach was called upon.

    • OptionalthisArg: any

      The thisArg parameter is an optional argument that specifies the value to be used as this when executing the callbackfn function. If thisArg is provided, it will be passed as the this value to the callbackfn function. If `thisArg

    Returns void

  • Time Complexity: O(n) Space Complexity: O(1)

    Use a comparison function to check whether a binary heap contains a specific element.

    Parameters

    • element: E

      the element to check.

    Returns boolean

    Returns true if the specified element is contained; otherwise, returns false.

  • Check if the heap is empty.

    Returns boolean

    True if the heap is empty, otherwise false.

  • Time Complexity: O(n) Space Complexity: O(n)

    The map function creates a new heap by applying a callback function to each element of the original heap.

    Type Parameters

    • EM
    • RM

    Parameters

    • callback: ElementCallback<E, R, EM>

      The callback parameter is a function that will be called for each element in the heap. It takes three arguments: el (the current element), index (the index of the current element), and this (the heap itself). The callback function should return a value of

    • comparator: Comparator<EM>

      The comparator parameter is a function that defines the order of the elements in the heap. It takes two elements a and b as arguments and returns a negative number if a should be placed before b, a positive number if a should be placed after

    • OptionaltoElementFn: ((rawElement: RM) => EM)

      The toElementFn parameter is an optional function that converts the raw element RR to the desired type T. It takes a single argument rawElement of type RR and returns a value of type T. This function is used to transform the elements of the original

        • (rawElement): EM
        • Parameters

          • rawElement: RM

          Returns EM

    • OptionalthisArg: any

      The thisArg parameter is an optional argument that allows you to specify the value of this within the callback function. It is used to set the context or scope in which the callback function will be executed. If thisArg is provided, it will be used as the value of

    Returns Heap<EM, RM>

    a new instance of the Heap class with the mapped elements.

  • Time Complexity: O(1) Space Complexity: O(1)

    Peek at the top element of the heap without removing it.

    Returns undefined | E

    The top element or undefined if the heap is empty.

  • Time Complexity: O(log n) Space Complexity: O(1)

    Remove and return the top element (the smallest or largest element) from the heap.

    Returns undefined | E

    The top element or undefined if the heap is empty.

  • Time Complexity: O(n) Space Complexity: O(n)

    Clear and add elements of the heap

    Parameters

    • elements: E[]

    Returns boolean[]

  • Time Complexity: O(n) Space Complexity: O(1)

    The "some" function checks if at least one element in a collection satisfies a given predicate.

    Parameters

    • predicate: ElementCallback<E, R, boolean>

      The predicate parameter is a callback function that takes three arguments: value, index, and array. It should return a boolean value indicating whether the current element satisfies the condition.

    • OptionalthisArg: any

      The thisArg parameter is an optional argument that specifies the value to be used as the this value when executing the predicate function. If thisArg is provided, it will be passed as the this value to the predicate function. If `thisArg

    Returns boolean

    a boolean value. It returns true if the predicate function returns true for any element in the collection, and false otherwise.

  • Time Complexity: O(n log n) Space Complexity: O(n)

    Sort the elements in the heap and return them as an array.

    Returns E[]

    An array containing the elements sorted in ascending order.

  • Static method that creates a binary heap from an array of elements and a comparison function.

    Type Parameters

    • E = any
    • R = any

    Parameters

    • elements: Iterable<E, any, any>
    • options: HeapOptions<E, R>

    Returns Heap<E, any>

    A new Heap instance.